Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Thamotharan, ${ }^{\text {a }}$

V. Parthasarathi, ${ }^{\text {a* }}$
L. Vijayalakshmi, ${ }^{\text {a }}$ B. Anuradha, ${ }^{\text {a }}$ Bhavik Desai ${ }^{\text {b }}$ and Anamik Shah ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan
University, Tiruchirappalli 620 024, India, and
${ }^{\text {b }}$ Department of Chemistry, Saurashtra
University, Rajkot 360 005, India
Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.107$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Benzylidene-1-(2,6-dichlorophenyl)indolin-2-one

The phenyl and dichlorophenyl rings of the title molecule, $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$, are oriented at angles of 39.3 (1) and 77.8 (1) ${ }^{\circ}$, respectively, with respect to the central indoline ring. The crystal structure is stabilized by van der Waals interactions.

Comment

Indole derivatives, widely distributed in living cells as tryptophan metabolites, have important biological functions. They are found to possess antihypertensive (Merk, 1971, 1974), antiinflammatory (Rodriguez et al., 1985) and antimalarial (ElSayed et al., 1986) activities. The structure determination of the title compound, (I), was undertaken to study the effect of the substituent groups on the conformation of the indoline ring and the molecular stereochemistry.

(I)

The phenyl ring is oriented at an angle of $39.3(1)^{\circ}$ with respect to the indoline ring. The dihedral angle between the dichlorophenyl ring and the indoline ring is $77.8(1)^{\circ}$. The substituent groups at N 1 and C 2 of indoline do not disturb the planarity of that ring. The $\mathrm{Csp}{ }^{2}-\mathrm{Cl}$ bond lengths $[\mathrm{C} 14-\mathrm{Cl} 1=$ 1.725 (3) \AA and $\mathrm{C} 10-\mathrm{Cl} 2=1.728$ (3) \AA] are in good agreement with the literature values (Allen et al., 1987). The exocyclic angle $\mathrm{C} 2-\mathrm{C} 15-\mathrm{C} 16$ of 129.5 (2) ${ }^{\circ}$ deviates significantly from the normal value of 120°. This may be due to the repulsion between atoms H 3 and H 17 ($2.31 \AA$). It is of interest to note that the shortest $\mathrm{Cl} \cdots \mathrm{Cl}$ intermolecular distance is 3.409 (2) Å, slightly smaller than the sum of the van der Waals radii of the corresponding atoms. The crystal structure is stabilized by van der Waals interactions.

Experimental

A mixture of salicylaldehyde (0.01 mol), dichlorofenic acid (0.01 mol) and triethylamine (2 ml) was refluxed on an oil bath for 5 h . On cooling, a crystalline solid separated out, was filtered off and then washed with chilled methanol and recrystallized from ethanol (yield: 75\%; m.p. 390-391 K).

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$
$M_{r}=366.22$
Monoclinic, $P 2_{1} / n$
$a=9.242(5) \AA$
$b=19.232(12) \AA$
$c=10.319(5) \AA$
$\beta=105.80(4){ }^{\circ}$
$V=1764.8(17) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.378 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=10-15^{\circ} \\
& \mu=0.38 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, white } \\
& 0.30 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.013$
diffractometer	$\theta_{\max }=25.0^{\circ}$
$\omega-2 \theta$ scans	$h=0 \rightarrow 10$
Absorption correction: ψ scan	$k=0 \rightarrow 22$
(North et al., 1968)	$l=-12 \rightarrow 11$
$T_{\min }=0.896, T_{\max }=0.929$	2 standard reflections
3290 measured reflections	every 100 reflections
3090 independent reflections	intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0294 P)^{2}\right. \\
& +1.0794 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.27 \mathrm{e}_{\mathrm{m}}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0058 \text { (8) }
\end{aligned}
$$

The H atoms were placed at geometrically calculated positions and a riding model was used for their refinement, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the attached atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

LV thanks the UGC, India, for the award of FIP fellowship (2000-2001).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

El-Sayed, K., Barnhart, D. M., Ammon, H. L. \& Wassel, G. M. (1986). Acta Cryst. C42, 1383-1385.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Merk, P. (1971). J. Appl. Phys. 21, 62-73.
Merk, P. (1974). Chem. Abstr. 80, 27298.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. \& Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813-3815.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

